
PHYSICAL REVIEW E 66, 046612 ~2002!
Dynamics of wave-pulse penetration into an evanescent region

D. R. Shklyar* and H. Matsumoto†

Radio Science Center for Space and Atmosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
~Received 20 November 2001; revised manuscript received 19 June 2002; published 17 October 2002!

The initial problem of plasma wave dynamics in the presence of a sharp density jump that divides the space
into transparent and opaque regions is studied. A wave packet is assumed to be initially localized in the
transparent region. The transient process of field penetration beyond the density barrier during the wave packet
reflection from the density jump is investigated. Signal velocity beyond the barrier is defined as the speed at
which some small, but finite, value of the field amplitude appears in the evanescent region. This velocity, which
is proved to be always less than the speed of light, is determined analytically for the case of quasi-Gaussian
wave packet. Further insight into the field dynamics in opaque region is gained by considering a steplike initial
wave packet.
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I. INTRODUCTION

As is known~see, for example, Ref.@1#!, wave propaga-
tion in the approximation of geometrical optics~GO! is de-
scribed by a set of equations similar to Hamilton’s equatio
in mechanics,

drW

dt
5

]v~kW ,rW !

]kW
[vW g ,

~1!
dkW

dt
52

]v~kW ,rW !

]rW
,

where the wave vectorkW plays the role of particle momen
tum, and the wave frequencyv(kW ,rW) expressed as a functio
of kW andrW from a local dispersion equation plays the role
Hamiltonian function. The group velocityvW g which appears
in Eqs.~1! is one of the fundamental quantities in the theo
of wave propagation in dispersive media. We recall h
some important aspects of the notion of group velocity f
lowing Ref. @2#.

In the framework of Eqs.~1!, the group velocityvW g rep-
resents the velocity along a ray trajectory on which
change of the wave vectorkW is governed by the second equ
tion in Eqs.~1!. This property of being the velocity of propa
gation of wave number perturbations constitutes one role
the group velocity. The other one consists in that the w
amplitude perturbations also propagate with the group ve
ity. In particular, if the initial wave packet is localized i
space aroundrW0, and its spectral amplitude is substant
only for kW close to some valuekW0, then the resulting wave
field is concentrated around the ray trajectory determined
Eqs.~1! with initial conditionsrW0 ,kW0, the wave packet as th
whole moving with the corresponding group velocity.

*Permanent address: IZMIRAN, Troitsk, Moscow Regio
142190, Russia. Electronic address: david@izmiran.rssi.ru

†Electronic address: matsumot@kurasc.kyoto-u.ac.jp
1063-651X/2002/66~4!/046612~11!/$20.00 66 0466
s

f

e
-

e

of
e
c-

l

y

We should stress that the group velocity usage as in
last case suffers intrinsic inconsistency. Indeed, in orde
speak about the coordinate of the wave packet, it should
localized in space at each moment of time. However,
group velocity is associated with a particular wave norm
vector and, thus, assumes the wave packet to be narro
the phase space. These two requirements are, strictly sp
ing, incompatible, since a function with a limited spectru
cannot be localized. Therefore, when dealing with spatia
confined wave packets, one should keep in mind that th
spectra contain arbitrary high harmonics that ensure z
field outside the localization region. By the way, this cons
eration already shows that it is meaningless to simu
neously think about band-limited filters and arbitrarily sm
wave amplitudes.

The true meaning of the GO concept of narrow~in the
phase space! wave packets consists in that they have sh
spectral maxima and, consequently, spatial widths m
larger than the wavelength. Thus, a consistent GO consi
ation of spatially localized wave packets requires the follo
ing scaling:

l!L!L, ~2!

wherel, L, andL are the characteristic values of the wav
length, the wave packet width, and the spatial scale of
problem, respectively. The inequalities~2! constitute the well
known conditions of applicability for GO@3#.

The concept of group velocity is usually used with refe
ence to transparent media, i.e., in the case when both
frequency and wave vector connected by a dispersion r
tion are real quantities.~An investigation of the group veloc
ity in an absorbing medium for the example of Gauss
wave packet propagation has been presented in Ref.@4#,
where the corresponding references may also be found.! Ac-
cording to GO, waves do not propagate in an area where
local dispersion relation gives an imaginary wave vec
component for a fixed value of frequency. In this case, E
~1! describe the reflection of a wave from an evanesc
region. The basis for treating the wave frequency as be
fixed is that, in a stationary medium, the wave frequen
does not change. This argument is certainly valid if, from
©2002 The American Physical Society12-1
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very beginning, we look for a monochromatic and, thus, s
tionary solution to a problem. However, it is necessary
bear in mind that any initial problem is not stationary@5#,
and the physical requirements under which such a prob
with localized initial conditions is near monochromatic a
not trivial.

It is generally admitted that the description of electroma
netic field in the evanescent region in a way similar to t
used for transparent region is problematic; in particular,
concept of signal velocity in opaque region is still und
discussion@6,7#. Clearly, for a description of the field behav
ior in the evanescent region, it is necessary to use w
equations rather than the equations of GO. However, w
using the wave equations, the basic characteristics of
field beyond a density barrier were obtained for a monoch
matic and, thus, stationary problem. Obviously, such a c
sideration does not contain the dynamics of the process,
a stationary problem, the dynamics are missing. Similar s
ation, as has been pointed out in Ref.@8#, is in the problem of
quantum tunneling: fixed energy tunneling described by
tionary Schro¨dinger equation is well understood, while the
are still open questions in nonstationary problem.

The present work is devoted to investigation of the fie
dynamics in the evanescent region, in particular, to determ
ing the velocityvs at which a field perturbation penetrate
beyond the density barrier. We show that a physically me
ingful definition of this quantity, which at the same tim
constitutes a means of measuring it, leads to finite value
vs which are always less than the speed of light. We sho
note a closely related, both from physical and mathemat
points of view, problem of particle tunneling time in qua
tum mechanics~see comprehensive discussions of the pr
lem in Refs.@9–11# and references therein!. Although the
problem of quantum tunneling is out of the scope of t
present work, some comments and comparisons relate
our results are given where appropriate.

II. MODEL AND BASIC EQUATIONS

We consider a one-dimensional initial problem for tran
verse electromagnetic waves in a plasma with a density ju
at thex50 plane. In dimensionless variables in which t
speed of light and the plasma frequency atx,0 are unity,
this problem is described by the following equation for a
component of the electromagnetic field:

]2f ~x,t !

]t2
2

]2f ~x,t !

]x2
1vp

2~x! f ~x,t !50, ~3!

where

vp
2~x!5H 1, x,0

v1
2 , x.0,

and it is assumed thatv1
2 .1. Introducing initial values of

the field f (x,t) and its derivative over time according to
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c~x!5 f ~x,t !u t50 , w~x!5
] f ~x,t !

]t U
t50

,

and applying Laplace transformation over time to Eq.~3! we
obtain

]2F~x,p!

]x2
2@vp

2~x!1p2#F~x,p!52pc~x!2w~x!. ~4!

Here F(x,p) is Laplace transform over time of the fiel
f (x,t) determined in the usual way~e.g., Ref.@12#!. Note
that the quantity in square brackets in Eq.~4! is equal, re-
spectively, to

q2[11p2, x,0,
~5!

k2[v1
2 1p2, x.0.

We now defineq and k as single-valued functions of th
complex variablep,

q5A11p2, k5Av1
2 1p2, ~6!

whereq andk are the values of the square root with a po
tive real part. Obviously, the functionsq andk determined in
this way are analytical functions ofp in the right-half plane,
i.e., at Re(p).0. However, if we introduce two branch cu
from 2 i` up to 2 i and fromi up to i` ~see Fig. 1!, then,
given v1

2 .1, the functions determined above will be an
lytical functions of p in any area of the complex planep
which does not contain the branch cuts. On different ba
of the cuts, the imaginary parts of the functionsq and k
differ by signs, while their real parts are positive in the who
domain of analyticity. We also specify the asymptotic pro
erties of the functionsq andk at upu→`,

q.k.H p, Re~p!.0

2p, Re~p!,0.
~7!

FIG. 1. Complexp plane.
2-2
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At the same time, on the part of imaginary axisp connecting
the branch cuts, the functionsq andk are positive real quan
tities.

Having determined the functionsq and k, let us turn to
fundamental set of the homogeneous equation~4!. This set,
which represents two linearly independent solutions of
homogeneous equation continuous at the pointx50, to-
gether with their first derivatives overx can be chosen in the
form

H1~x!5H eqx, x,0

k1q

2k
ekx1

k2q

2k
e2kx, x.0,

~8!

H2~x!5H e2qx, x,0

k2q

2k
ekx1

k1q

2k
e2kx, x.0.

The corresponding Wronskian is equal to

W[H1~x!H28~x!2H18~x!H2~x!522q, ~9!

where the prime means derivative with respect tox. Know-
ing the fundamental set of homogeneous equation it is p
sible to write the solution of the inhomogeneous equation~4!
according to a general formula. The solution, finite at b
x→2` andx→1`, can be written as

F~x,p!5H2~x!E
2`

x H1~x8!r ~x8!

W~x8!
dx8

1H1~x!E
x

` H2~x8!r ~x8!

W~x8!
dx82H1~x!

k2q

k1q

3E
2`

` H1~x8!r ~x8!

W~x8!
dx8, ~10!

wherer (x) is the right hand side of Eq.~4!,

r ~x![2pc~x!2w~x!,

W is determined in Eq.~9!, and all quantitiesr , H1 , H2, and
W depend on the parameterp of the Laplace transformation
The field f (x,t) is expressed throughF(x,p) with the help of
the inverse Laplace transformation~e.g., Ref.@12#!,

f ~x,t !5
1

2p i Es2 i`

s1 i`

F~x,p!eptdp ~s.0!. ~11!

Let us now simplify the solution~10! for x.0. Using the
corresponding expressions forH1(x), H2(x), r (x), and
W(x), and assuming that the initial perturbation is localiz
in the regionx,0, we get

F~x,p!5
pe2kx

k1q E
2`

0

eqx8Fc~x8!1
w~x8!

p Gdx8, ~12!
04661
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whereq andk are the analytical functions ofp determined in
Eqs. ~6!. We assume that, att→0, x,0, the field f (x,t)
constitutes a wave packet composed of waves in which
frequency and wave vector are connected by the disper
relation relevant for the propagation region (x,0),

f ~x,t→0!5E
2`

`

c̃1~k!eikx2 iv(k)t
dk

2p

1E
2`

`

c̃2~k!eikx1 iv(k)t
dk

2p
, ~13!

where

v~k!5A11k2sgn~k!. ~14!

The first integral in Eq.~13! represents a wave packet prop
gating in positive direction of thex axis while the second
integral corresponds to waves propagating in the nega
direction of thex axis. As we assume that the wave packe
initially localized in the regionx,0, the particular form of
the function c̃2(k) should not influence the field in thex
>0 region of present interest. Therefore, we can write

c̃2~k!5c̃1~k![
c̃~k!

2
. ~15!

Then,

c~x![ f ~x,t !u t505E
2`

`

c̃~k!eikx
dk

2p
,

~16!

w~x![
] f ~x,t !

]t U
t50

50.

Thus, with the assumptions~13! and~15!, the second term in
the square brackets in Eq.~12! vanishes. Let us designate b
C(p) the integral corresponding to the first term in Eq.~12!,

C~p!5E
2`

0

eqx8c~x8!dx8, ~17!

where q5q(p) is the function defined above, so thatC
5C@q(p)# is a composite function ofp. Integral~17! is an
analytical function ofq for all Re(q).0. Since in the whole
complexp plane outside the branch cuts the quantityq is an
analytical function ofp, and has Re(q).0, in the same area
of p plane the functionC(p) appears to be an analytica
function ofp. In terms of the notation introduced, the expre
sion for the field which follows from Eqs.~11! and~12! can
be rewritten in the form

f ~x,t !5
1

2p i Es2 i`

s1 i`pe2kx

k1q
C~p!eptdp. ~18!

We should notice that the quantity (k1q) is not equal to
zero anywhere on the complex planep, which is easily veri-
fied with the help of definitions~6!.
2-3
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III. FIELD PENETRATION INTO AN EVANESCENT
REGION IN THE CASE OF A QUASI-GAUSSIAN INITIAL

WAVE PACKET

A. Expression for the field

Let the field att50 be expressed as

c~x![ f ~x,t50!5A~x2xm!eik0x, ~19!

whereA(x2xm) is a slowly varying amplitude localized in
the regionx,0 aroundxm and having a characteristic sca
L obeying the requirements

2p/k0!L!uxmu. ~20!

We will assume that, in the region whereA(x2xm) is essen-
tially distinct from zero, it has the form

A~x2xm!.e2 (x2xm)2/L2
. ~21!

We cannot, however, consider this presentation to be v
for all x. This would lead to incorrect properties of the fun
tion C(p) ~17! at upu→` because the expression~21!, al-
though exponentially small, is not zero atx.0. Neverthe-
less, for the sake of shortness, we will omit the pre
‘‘quasi’’ later on.

According to the problem under discussion, we will a
sume that the wave frequencyv0 corresponding to the wav
vector k0 in the regionx,0 is lower than the plasma fre
quency atx.0, i.e.,

v0[A11k0
2,v1 . ~22!

The function C(p) ~17!, which defines the field atx.0
according to the formula~18!, is thus equal to

C~p!5E
2`

0

eqx81 ik0x8A~x82xm!dx8. ~23!

Proceeding to the analysis of the field in the evanescen
gion determined by Eqs.~18! and ~23! let us assume tha
A(x82xm)[0 for x.x0, i.e.,x0,0 is the coordinate of the
leading edge of initial wave packet. Then, the quantity~23!
permits the following estimation:

uC~p!u,eRe(q)x0E
2`

0

uA~y1x02xm!udy

,MeRe(q)x0, M5const,`, ~24!

where we have assumed that the amplitude of the in
wave packet is an absolutely integrable function. Using
~24! and relations~7!, we find the asymptotic behavior of th
integrand in Eq.~18! at upu→` and Re(p).0, i.e., in the
right-half plane,

Upe2kx1pt

k1q
C~p!U,M

2
eRe(p)(t2x1x0).

We see that for
04661
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t,x2x0[x1ux0u, ~25!

the integrand decreases exponentially atupu→` and Re(p)
.0. Thus the contour of integration can be closed in
right-half plane. Since the Laplace transform is an analyti
function ofp in the right-half plane, the total integral is iden
tically equal to zero. The quantityx1ux0u represents the dis
tance from the packet leading edge att50 to the pointx in
the evanescent region. Sincex0 andx are arbitrary~provided
that x0,0 andx.0), and in dimensionless units the spe
of light is equal to unity, the result above shows that, eith
in the transparent or in the evanescent region, the signal d
not propagate with a velocity exceeding the speed of lig
This general result, which arises naturally in our consid
ation, is the direct consequence of asymptotic relations~7!
connected with Eq.~3!. We would not find this effect if,
instead of using Lorentz-invariant equation~3!, we used
Schrödinger equation, which, in a sense, is an expansion
Eq. ~3! valid only for small (k2k0)2. Thus, the result above
is a relativistic effect. We should mention that superlumin
or infinite velocities could be ‘‘found’’ in many cases othe
than Schro¨dinger equation, when nonrelativistic relations a
used out of the frame of their validity. For example, Ne
ton’s law leads to unlimited increase of a charged parti
velocity in a constant electric field; less trivial example
that according to classical thermal conductivity equation
temperature perturbation propagates with infinite veloc
etc.

Let us now turn to the general caset.0, whent is not
restricted by inequality~25!. As the integration in Eq.~23! is
performed only over the regionx,0, the quantityC(p)
drops exponentially atupu→` and Re(p),0, since the cor-
responding values ofq obey the requirementsuqu→` and
Re(q).0 @see Eq.~7!#. Thus, att.0, the integrand in Eq.
~18! tends to zero exponentially atupu→` and Re(p),0.
Nevertheless, we cannot close the contour of integration
the left-half plane due to the presence of branch cuts~see
Fig. 1!. It is possible, however, to deform the contour
integration so that it does not intersect the branch cuts a
where and to perform the integration over the contourS1
1S31S2 shown in Fig. 1. As we have seen above, the in
gral over the contourS3 tends to zero, so the evaluation
reduced to integration over the contoursS1 andS2, i.e., over
the banks of cuts. It is convenient to transfer from integrat
over p to integration over the variableq. In doing this, one
should remember the following: the functionsq and k are
single-valued analytical functions ofp outside the branch
cuts. However, there is no one-to-one relation between th
functions, as the valuesp and 2p correspond to the sam
values ofq and k. One should bear this in mind when ex
pressing the functionsp andk throughq in different parts of
the complex plane of the variablep. We will write the com-
plex quantitiesp, q, andk as p5p11 ip2 , q5q11 iq2 , k
5k11 ik2. Obviously, on the banks of cuts, the values ofp1
andq1.0 are infinitesimal, i.e.,p andq are close to purely
imaginary numbers. The quantityk also has an infinitesima
positive real part on the banks of cuts atup2u.v1 , while at
1,up2u,v1 it is close to real positive quantity. These pro
erties, which follow from definitions~5!,~6! allow us to ex-
2-4
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pressp andk as functions ofq on the contoursS1 andS2.
Thus, for the quantityp we have

p5H 2 iA11q2
2 for Im~p!,0 ~contour S1!,

iA11q2
2 for Im~p!.0 ~contour S2!.

As for the quantityk, according to Eqs.~5! and ~6!, k
5A(v1

2 21)1q2. Here, however, we cannot takeq150 on
the contours of integration, since the requirement Re(k).0
does not permit us to determine the branch of the square
corresponding to thoseq values for which the quantityk is
purely imaginary. Therefore, for an exact definition of t
square root, we should take into account that the quantiq
has, though infinitesimal, positive real part. This leads t
definition of k valid on both contours of integration

k5A~v1
2 21!2q2

21 i« sgn~q2!, Re~k!.0. ~26!

Small additivei«sgn(q2) does not play a role forq2
2,(v1

2

21) whenk is a positive quantity but allows us to correct
determine the sign of the imaginary part ofk for q2

2.(v1
2

21).
As we have seen, the integration in Eq.~18! can be re-

duced to integrals over the banks of cuts on the planep ~Fig.
1!, where the quantityq is purely imaginary:q5 iq2. When
evaluating the quantityC(p) ~23! for imaginary values ofq,
we can already extend the integration to the wholex axis and
use the expression~21! everywhere, since under condition
~20! the regionx.0 brings an exponentially small contribu
tion to the integral. We then get

C~p!5ApLe2(q21k0)2L2/41 i (q21k0)xm. ~27!

Using the expression~27! and transfering to new variable o
integrationk52q2 we obtain from Eq.~18!,

f ~x,t !5
L

2Ap
E

2`

`

dk
k

@k1 ik~k!#
e2(k2k0)2L2/4

3e2k(k)x2 i (k2k0)xm2 iv(k)t1
L

2Ap
E

2`

`

dk
k

@k1 ik~k!#

3e2(k2k0)2L2/4e2k(k)x2 i (k2k0)xm1 iv(k)t, ~28!

where the first and second integrals correspond, respecti
to integration over the contoursS1 ,S2 ; v(k) is given by Eq.
~14!, andk(k)5k(2q2), wherek(q2) is determined in Eq.
~26!.

Proceeding to the analysis of the field~28!, we notice that
the characteristic scale of variation of the factor exp@2(k
2k0)2L2/4# is of the order ofAp/L, while the fast varying
exponent exp@2 i (k2k0)xm# oscillates with a much smalle
period 2p/uxmu @see Eq.~20!#. As the variation of the tota
phase in the second integral in Eq.~28! for k;k0 is fast for
all t.0, its contribution to the field is exponentially sma
so that the field atx.0 is approximately determined by
04661
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f ~x,t !.
L

2Ap
E

2`

`

dk
k

@k1 ik~k!#
e2(k2k0)2L2/4

3e2k(k)x2 i (k2k0)xm2 iv(k)t. ~29!

The integral in Eq.~29! can be evaluated with the help o
saddle-point technique using the fact thatk0xm , k0vgt, and
k0L are large parameters. The saddle point is specified by
equation

~ks2k0!L212i @xm1vg~ks!t#50, ~30!

which determines the pointks as the function oft and the
parametersk0 , L, and xm . The wave group velocityvg
which enters Eq.~30! is equal to

vg[
]v

]k
5

k

A11k2
.

The integral ~29! contains the fast oscillating factor and
thus, is exponentially small unlessuxm1vg(k)tu&L/Ap
!uxmu. ~We remind the reader thatxm,0.! The analysis of
Eq. ~30! shows that the position of the saddle point on t
complexk plane is controlled by the parameter that we d
note bya and which is of fundamental importance in o
problem,

a5
uxmu

k0L2
. ~31!

The physical meaning of the parametera can be understood
from the well known GO equation for the complex wav
amplitude Ã including dispersive terms~see, for example,
Ref. @13#!,

i S ]Ã

]t
1vg

]Ã

]x
D 1

1

2

]vg

]k

]2Ã

]x2
50,

which shows that the dispersive spreading of the wa
packet becomes important fortd;k0L2/vg , while the time
of wave packet propagation up to the density jump istp
;uxmu/vg . We thus see that the parametera controls the
dispersive spread of the wave packet before it reaches
point x50. In the following, we will assume that

a!1, ~32!

i.e., the dispersive spread is not important. In this case
gets from Eq.~30!,

~ks2k0!522i
xm1vg0t

L212ivg08 t
, ~33!

where

vg05vg~k0!, vg08 5
]vg

]k U
k5k0

.

2-5
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We see that the saddle point is close to the real axis,
deviation of the real part ofks from k0 being of the second
order in parametera. The expansion of the fast varying pa
of the phase in Eq.~29! aroundks has the form

2
~k2k0!2L2

4
2 i ~k2k0!xm2 iv~k!t

52 iv0t2
~xm1vg0t !2

L212ivg08 t
2S L2

4
1

ivg08 t

2 D ~k2ks!
2, ~34!

wherev05v(k0). Substitutingk5ks into all slowly varying
quantities in Eq.~29! and performing the integration we ob
tain in a straightforward way

f ~x,t !.
L

AL212ivg08 t

ks

@ks1 ik~ks!#

3expF2
~xm1vg0t !2

L212ivg08 t
Ge2k(ks)x2 iv0t, ~35!

where the square root of the complex quantity has a pos
real part. As follows from Eq.~35!, the field is essentially
distinct from zero only fort;2xm /vg0 when ks.k0 @see
Eq. ~33!#. In the lowest order in parametera, the expression
for the field amplitude takes the form

u f ~x,t !u.
k0

Av1
2 21

e2k(k0)x2(xm1vg0t)2/L2
. ~36!

B. Signal velocity in the evanescent region

Expression~36! permits us to determine the velocity o
signal penetration beyond the barrier. We define the time
signal arrival at a pointx as the time when the signal ampl
tude reaches a certain measurable levelAmin . When it hap-
pens, the corresponding value of the exponent in Eq.~36!,
which we denote bye, is equal to

e2k(k0)x2(xm1vg0t)2/L2
[e5

AminAv1
2 21

k0
. ~37!

We should mention that, by definition,e,1. Equation~37!
determines the signal arrival time at the pointx while the
derivative of the inverse function gives the velocity of t
signal in the regionx.0,

dx

dt
[vs5

2vg0

k0L
AlnS 1

e D2k0x. ~38!

We see that the signal velocity beyond the density barrie
essentially different from that in the transparent region. Fi
it decreases withx up to zero, in accordance with the fa
that, at largex, the field amplitude never reaches the chos
level. Second, the signal velocity depends, although logar
mically, on the chosen levelAmin , so that lower values o
signal amplitude propagate with higher velocities. It is im
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portant to note that the value ofe cannot be chosen arbitrar
small. Indeed, according to Eqs.~19! and ~21! the field atx
50, t50 is equal to

f ~x50, t50!.exp~2xm
2 /L2!. ~39!

As we assume that att50 the field is localized in the region
x,0, the minimum level of measurable signal should
much larger than the value~39!, i.e.,

e@exp~2xm
2 /L2!,

so that

vs,
2vg0uxmu

k0L2
!

2vg0k0

k0
,

where the relations~31! and ~32! have been taken into ac
count. Thus, the velocity of signal is always less than
speed of light.

Recently, there has been a considerable discussion o
signals related to the evanescent mode~see Ref.@14# and
other papers from Ref.@11#!. The central point in this discus
sion is whether or not those signals can travel with the
locity exceeding the speed of light. The paper@14# claims
such a possibility, which has supposedly been demonstra
At the same time, we have shown that the signal veloc
introduced above is always less that the speed of light.
clear up this point, let us consider the dynamics of the fi
penetration into the evanescent region in more detail. Figu
2–4 show the surface of the field amplitude in the evan
cent region, as well as the cross sections of this surface
resenting the field amplitude as the function of time for va
ous coordinates, and the field amplitude as the function
coordinates for various moments of time. Figures 2–4 co
spond to the following values of parameters:

xm5250, L515, k051, v1
2 53.

FIG. 2. Surface of the field amplitude above the (x,t) plane for
the Gaussian initial wave packet.
2-6
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DYNAMICS OF WAVE-PULSE PENETRATION INTO AN . . . PHYSICAL REVIEW E66, 046612 ~2002!
We see that the field dynamics~which, of course, exists in
nonstationary problem, as the field amplitude at each p
depends on time! has nothing to do with propagation. W
suspect that the conclusion about the instantaneous trav
of the evanescent region by the signal is connected wi
misinterpretation of some plot similar to that shown in F
3, and with the extension of an intuitive concept of the m
chanical velocity to nonlocal process. In general, to de
mine a velocity, we need to know two spatial positions of t
object at two moments of time. A mass point represents
simplest example which casts no doubt about the mass p
position at each moment of time. A wave packet with a ch
acteristic width less than the distance between two spa
points can be treated in a similar way. But in the case
evanescent region, we deal with the opposite situation. H
the characteristic spatial scale is less than the wave pa
width because the wave vanishes on the length of the o
of several wavelengths, while the initial wave packet wid
is much larger than that@see Eq.~20!#. Thus, Fig. 3 by no

FIG. 3. Field amplitude as the function of time for various c
ordinatesx51,2, . . . ,9, for the Gaussian initial wave packet.

FIG. 4. Field amplitude as the function ofx for various times
t510,20, . . . ,140, for the Gaussian initial wave packet.
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means implies that the signal reaches all spatial points in
evanescent region at the same time. This becomes clea
we consider Fig. 4: looking, for example, at the boldface li
corresponding to dimensionless timet570, it is impossible
to say at which point the signal is at this moment, as
signal is spread over the whole evanescent region. The
stantaneous traverse of the evanescent region, and the c
sponding infinite velocity pointed out in Ref.@14#, would
require the absence of the field in the evanescent regio
the preceding moment, which, of course, is not the ca
Moreover, if one defines the signal position at some mom
t as the point corresponding to the maximum spatial am
tude, then the signal would always be at the pointx50 and
thus not propagating at all.

IV. PECULIARITIES OF THE FIELD DYNAMICS
IN THE MODEL OF A STEP-LIKE INITIAL

WAVE PACKET

As the question about signal velocity in the evanesc
region is of fundamental importance, to get more insight in
this problem we will consider another model of the initi
wave packet, namely,

f ~x,t50![c~x!5R~x!eik0x, ~40!

where the functionR(x) is equal to

R~x!5H 1 for ~xm2 l !,x,~xm1 l !,

0 for x,~xm2 l !ux.~xm1 l !.
~41!

Function R(x) ~41!, which determines the initial wave
packet envelope, represents a step of a finite width in thx
space. As in the case of Gaussian wave packet, the qua
xm,0 is equal to the coordinate of the wave packet cen
l .0 is its half-width, the coordinate of the packet fro
(xm1 l ) lies in the regionx,0, and the relation~22! is also
assumed. The expression~18! for a field in the evanescen
region remains valid, while the functionC(p) now takes the
form

C~p!52
sinh@~q1 ik0!l #

~q1 ik0!
e(q1 ik0)xm, ~42!

where sinh stands for hyperbolic sine.
The field determined by Eqs.~42! and ~18! is equal to

f ~x,t !5
eik0xm

p i E
s2 i`

s1 i` sinh@~q1 ik0!l #

~q1k!~q1 ik0!
eqxm2kx1ptpdp.

~43!

Since the integrand in Eq.~43! is an analytical function ofp
in the right-half plane, and atupu→` is asymptotically equal
to ep(t1xm1 l 2x)/p @see Eq.~7!#, we immediately find that at
t,x1uxm1 l u the integral is equal to zero. Thus, in th
model we also meet with the fact that, in both the regio
x,0 andx.0, the signal moves with a velocity not large
than the speed of light.

For t.x1uxm1 l u, in evaluation of the field~43! we may
follow the same steps as in the case of Gaussian w
packet, thus arriving at
2-7
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f ~x,t !.
1

p E
2`

` sin@~k2k0!l #

~k2k0!@k1 ik~k!#
e2 i (k2k0)xm2k(k)x2 iA11k2tkdk, ~44!
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where k(k)5A(v1
2 21)2k22 i« sgn(k), Re@k(k)#.0.

Due to Eq. ~22!, k is a real positive quantity fork5k0,
which is a manifestation of the fact that the regionx.0 is
opaque for the frequencyv05A11k0

2.
The field f (x,t) at x.0 is equal to zero not only fort

,x1uxm1 l u, as we have seen above, but also fort→`,
since the integrand in Eq.~44! is smooth and finite on the
whole k axis, tends to zero foruku→`, and contains an os
cillating factor whose period tends to zero att→`. The fact
that the field in the evanescent region vanishes att→` is
connected with that we consider the density barrier which
semi-infinite in space, i.e., that extends in the whole reg
x.0. This excludes an asymptotic wave tunneling, so
process that we study is purely transient. Apart from dea
with a type of telegraph equation rather than with Sch¨-
dinger equation, this is another point that differs our stu
from investigations of quantum tunneling through a fin
width potential barrier@8,15#.

Obviously, the intermediate values of time, i.e.,t*x
1uxm1 l u are of the main interest for investigating the tra
sient process of field penetration beyond the density bar
For the time interval which includes the above mention
values, the integral~44! has been calculated numerically. Th
surface of the field amplitudeA(x,t)5u f (x,t)u is shown in
Fig. 5 for the following values of the model parameters:

xm5220, l 515, k051, v1
2 53.

At first glance the ‘‘rectangular’’ wave packet model~40!,
~41! seems quite suitable for defining the velocity of fie
penetration beyond a density barrier. Really, the spectrum
the initial perturbation has a pronounced maximum ak
5k0, which corresponds tov0,v1 in the regionx,0; the
field is initially localized and has a sharp leading edge ax

FIG. 5. Surface of the field amplitude above the (x,t) plane for
the steplike initial wave packet.
04661
is
n
e
g

y

r.
d

of

5xm1l,0. However, if we define the signal velocity in th
evanescent region in the same way as for Gaussian w
packet, i.e., according to the time of finite signal amplitu
arrival at some point, we will find that, in both the transpa
ent and evanescent regions, the signal propagates with
velocity of light ~see Fig. 5!. Just the fact that the signa
reaches the pointx50 at t5uxm1 l u, thus propagating in the
transparent region with the speed of light rather than wit
group velocityvg0,1, gives the key to understanding th
result. The point is that the packet~40!,~41! contains high
harmonics withk@k0 with significant amplitudes for which
the density jump at the pointx50 does not represent a ‘‘po
tential barrier’’ and which propagate at allx with a velocity
close to the speed of light.

As we see from Fig. 5, the field amplitudeA at x.0 has
a quite complicated structure. Figure 6 shows the amplit
A as the function of time for several coordinates in the e
nescent region. Not surprisingly, forx50 the plot is centered
on t5uxmu/vg0. However, even atx50 there is a significant
spread of the wave packet as compared to the initial sh
Although a characteristic width of the plotDt;2l /vg0 is
well explained by propagation features in the regionx,0,
the essential influence of thekÞk0 harmonics is clearly seen
An important feature of the field dynamics in the regionx
.0 in the case of a steplike initial wave packet is that
evidently shows signs of propagation. This is related to
fact that the integral in Eq.~44! is slowly converging, which
is a mathematical manifestation of the influence of the h
harmonics mentioned above. The influence and even
dominance of high harmonics in the framework of Sch¨-
dinger equation has been pointed out by Hartman@16#, ~see
also Refs.@15,17#!. Thus, the field atx.0 is determined by
a competition betweenk.k0 harmonics which dominate th

FIG. 6. Field amplitude as the function of time for various c
ordinatesx50,3, . . .,18, for the steplike initial wave packet.
2-8
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DYNAMICS OF WAVE-PULSE PENETRATION INTO AN . . . PHYSICAL REVIEW E66, 046612 ~2002!
initial field but attenuate heavily in the evanescent regi
and uk2k0u@1/l harmonics whose amplitudes are smal
but which suffer less or no attenuation in the regionx.0.
This makes the problem extremely sensitive to the spect
of initial perturbation, especially to the way how it drops
k→`, which has been pointed out in Ref.@18#. At x50, the
field is mainly determined by thek.k0 harmonics which
undergo no attenuation in thex,0 region. However, forx
.0, the bulk of high harmonics, some of which can prop
gate in the regionx.0, play the dominant part, causing th
propagation features to appear. We should underline tha
the context of field penetration into the evanescent reg
the term ‘‘attenuation’’ used above describes the field beh
ior which is not related to a true absorption of energy.

Main features of the time dependence of the local fi
amplitude in the evanescent region shown in Fig. 6, nam
the presence of two maxima, oscillations after the sec
maximum, and final vanishing at large time are quite sim
to those found in Ref.@8# for the case of finite width poten
tial barrier in the context of Schro¨dinger equation~see Fig. 7
from Ref. @8#!. It is not surprising, of course, since the fe
tures of the field dynamics which are not determined by h
harmonics should be alike for Schro¨dinger and telegraph
equations.

V. SIGNAL VELOCITY FOR AN EXTENDED, FINITE
BANDWIDTH SOURCE VERSUS SUPERLUMINAL

PROPAGATION

As we have seen above, in the case of a Gaussian in
wave packet, the local amplitude maxima over time
reached at all points in the evanescent region simultaneo
In the case of a steplike initial wave packet, the amplitu
maximum atx50 is reached even later than at some poi
x.0. Phenomena of this type are sometimes referred t
‘‘superluminal signal propagation’’@14#. We proceed with a
general discussion of this issue pertaining to both Gaus
and steplike initial wave packets, in the framework of cla
sical electrodynamics, to which the contents of the pres
paper are related. First of all, we notice that no signal reac
any point in either transparent or evanescent region fa
than the light would reach this point from the leading edge
the wave packet. Also, any given value of the field amplitu
propagates in a ‘‘proper’’ way, namely, it first reaches t
points that are closer to the wave packet front. Howev
there is a tendency to consider the arrival of the amplitu
maximum as the arrival of some information. But even th
on closer examination, does not contradict causality or r
tivity principles. One should only realize that, in the proble
under discussion, we deal with an extended initial sou
with a dimension exceeding that of the region where
signal is registered. Another essential point, which is parti
larly important for a steplike initial wave packet, is that
localized field always contains high harmonics. Although
consider an initial problem, we deal with the second or
equation over time, and the initial conditions also include
time derivative of the field. Thus, in fact, we have hig
space/time harmonics in the initial signal. Furthermore, i
completely wrong, for example, for a Gaussian wave pac
04661
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to say that some signal~or information! associated with the
amplitude maximum comes first to the pointx50 and then
in no time reaches the whole evanescent region. Since t
maxima decrease exponentially with the distance, they c
not be considered as the same signal.~The observed reshap
ing of a wave packet, or deformation of a pulse should not
mixed with propagation@15#.! Thus, we can only say tha
some information sent from an extended source by mean
a finite~or even infinite! band width wave packet reached th
whole evanescent region simultaneously. Under the co
tions that~1! the time at which the signal reaches any point
larger than the distance from the wave packet leading edg
t50 divided by the speed of light, and~2! the spatial dimen-
sion of the evanescent region is smaller than that of
source, both of which are met, the simultaneous appeara
of local field amplitude maxima at all points in the evane
cent region does not contradict either relativity or causa
principles. This conclusion is based on the detailed anal
of particular physical model. Strong arguments against
interpretation of experimental or theoretical results that
sumes violation of Einstein causality have been given in R
@6# based on most general physical principles.

VI. CONCLUDING REMARKS AND SUMMARY
OF RESULTS

Some of the recent works that investigate field evolut
in an evanescent medium consider boundary problem fo
point source within this medium@7,17#. Application of an
effective filter to the source or receiver considered in Re
@7,17# gives an important insight into the field nature in th
evanescent medium. In particular, it permits to reduce
magnitude of forerunner as compared to monochrom
front, which helps detection of the latter~see the reference
above for details!. Since in the present paper we study initi
problem with an extended wave packet originally localiz
in transparent region, direct comparison of our results w
those obtained in the above cited papers is hardly possibl
general, we believe that initial problem that we consider
more suitable and clear for correct definition of signal velo
ity in the evanescent region.

Inasmuch as in this study we are mainly interested
determining the velocity of the signal as the whole, and
finding conditions under which it is possible, we always de
with the total spectrum of the signal. Not surprisingly, t
velocity found@see expression~38!# is not universal, but de-
pends on specific initial conditions. More precisely, the s
nal velocity depends onvg0 ~or k0), which is the wave char-
acteristic in transparent region, onk0, which accounts for the
effective potential height, and also onL, which characterizes
initial spectrum, or equivalently, initial shape of the wa
packet envelope.

It is well understood and seems to be generally accep
that superluminal propagation of the front~or leading edge!
of a signal in the framework of Schro¨dinger equation is con-
nected with the fact that this equation, in contrast to Ma
well’s equations, is not Lorentz invariant@15#. However, the
question of superluminal velocity of a signal as a whole
still under discussion, and so is the definition of this veloc
2-9
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D. R. SHKLYAR AND H. MATSUMOTO PHYSICAL REVIEW E66, 046612 ~2002!
A number of suggestions have been listed in Ref.@6#. Obvi-
ously, in the framework of Schro¨dinger equation this ques
tion is meaningful only in the case when the field in t
evanescent region is not dominated by high harmonics.
we have seen above, if the initial spectrum does not drop
enough, e.g., in the case of steplike initial conditions,
signal velocity is difficult to determine in the context of tel
graph equation though.

The idea of superluminal velocity arises from the assoc
tion ~in fact, unsubstantiated! of the time at which a loca
maximum of the field amplitude appears at some pointx in
the evanescent region with the time of signal arrival. Such
association typical of the wave propagation in transpar
media assumes silently that the wave packet amplitud
transported in space. In the evanescent region, where
local amplitude maximum decreases exponentially in spa
this conception has no physical grounds. Indeed, the w
packet position at a timet ~or the most probable position o
a particle! might be connected with a spatial maximum of t
wave packet amplitude~or the wave function amplitude! at
this time. However, it is wrong to associate the amplitu
maximum over time observed at some point with the wa
packet~or particle! position, as the wave packet amplitud
may be larger~or even much larger! at some other point a
the same time. Thus, signal velocity in the evanescent re
needs to be rigorously defined, as has been underlined
many authors~e.g., Refs.@6,7#!.

Towards this aim, and in order to investigate the dynam
of electromagnetic field penetration into the evanescent
gion beyond a density jump in a plasma, the initial wa
problem has been solved in a frame of telegraph equat
with initial conditions in the form of a wave packet localize
in front of the density barrier. Since the wave field in t
evanescent region is initially absent, and since, during
process of reflection from the density jump, the field par
penetrates through, there should be a physically meanin
quantity which describes the velocity of penetration. To d
fine a physical quantity means to determine the way how
quantity should be measured@19#. We suggest defining signa
velocity as the speed at which some small but finite leve
the field amplitude appears in the evanescent region. T
definition permits the determination of the velocity of th
field penetration into the evanescent region theoretically@see
the exact analytical expression~38!# and implies a way for its
unambiguous experimental measurements. We show tha
velocity determined in such a way never exceeds the sp
of light.

Delgado and Muga@10# have analyzed the possibility t
measure anomalously short tunneling time in the case w
initial wave packet is localized close~on the scale of the
-
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barrier widthd) to a potential barrier, and arrived at a neg
tive conclusion. They have also revealed essential and
motivated physical parameters of the problem. We sho
formulate clearly our conclusions on this matter for the pro
lem studied in this paper. The first natural and common
quirement is the initial wave packet localization in front
the barrier. For a steplike packet, this assumes that, in c
sidered geometry, the packet leading edge is initially loca
to the left of the barrier. For a Gaussian initial wave pack
the localization in front of the barrier implies inequalitie
~20!. Although we consider semi-infinite barrier (d→`), in-
equalities ~20! mean that, in a sense, the wave packet
initially located far from the density barrier~as compared to
its own widthL). For a steplike packet, which is only com
plimentary example in our study, we did not perform a
comprehensive analysis of the field dependence on the m
parameters, and did not find a case when the field in
evanescent region is not dominated by high harmonics
the considered example of parameters~see comments to Fig
5!, the signal velocity in the evanescent region consist
with our definition is equal to the speed of light.

Considering Gaussian wave packet, we have establis
condition ~32! for parametera ~31! that, together with Eqs
~20!, permits to introduce the velocity for the signal as t
whole relevant to the evanescent region. In physical ter
these conditions require that, on one hand, the wave pa
maximum is situated far enough from the density jump
order for a signal to be initially localized in transparent r
gion; but on the other hand, it is localized close enough
the density jump in order for dispersive spread before rea
ing the barrier to be negligible. These two conditions a
compatible provided thatkL@1, i.e., the wavelength is
much shorter than a characteristic wave packet width. W
these conditions are met, the saddle pointks which deter-
mines the field dynamics in the evanescent region is clos
the central wave numberk0 of the initial wave packet. For
Gaussian wave packet, not only the signal velocity is l
than the speed of light, but it also has quite a specific ch
acter: it depends on the distance in the evanescent regio
well as on minimum measurable signal amplitude.
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