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Dynamics of wave-pulse penetration into an evanescent region
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The initial problem of plasma wave dynamics in the presence of a sharp density jump that divides the space
into transparent and opaque regions is studied. A wave packet is assumed to be initially localized in the
transparent region. The transient process of field penetration beyond the density barrier during the wave packet
reflection from the density jump is investigated. Signal velocity beyond the barrier is defined as the speed at
which some small, but finite, value of the field amplitude appears in the evanescent region. This velocity, which
is proved to be always less than the speed of light, is determined analytically for the case of quasi-Gaussian
wave packet. Further insight into the field dynamics in opaque region is gained by considering a steplike initial
wave packet.
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[. INTRODUCTION We should stress that the group velocity usage as in the

last case suffers intrinsic inconsistency. Indeed, in order to

As is known(see, for example, Refl]), wave propaga- speak about the coordinate of the wave packet, it should be
tion in the approximation of geometrical opti¢G0O) is de- localized in space at each moment of time. However, the
scribed by a set of equations similar to Hamilton's equationgroup velocity is associated with a particular wave normal

in mechanics, vector and, thus, assumes the wave packet to be narrow in
the phase space. These two requirements are, strictly speak-
dr  dw(kr) - ing, incompatible, since a function with a limited spectrum
at vag, cannot be localized. Therefore, when deal!ng vy|th spatlally
confined wave packets, one should keep in mind that their
. . (1) spectra contain arbitrary high harmonics that ensure zero
dk  do(k,r) field outside the localization region. By the way, this consid-
dat o eration already shows that it is meaningless to simulta-

neously think about band-limited filters and arbitrarily small
wave amplitudes.
oo i The true meaning of the GO concept of narrGw the
tum, and the wave frequenay(k,r) expressed as a function phase spagewave packets consists in that they have sharp
of k andr from a local dispersion equation plays the role of spectral maxima and, consequently, spatial widths much
Hamiltonian function. The group veloci@g which appears larger than the wavelength. Thus, a consistent GO consider-
in Egs.(1) is one of the fundamental quantities in the theoryation of spatially localized wave packets requires the follow-
of wave propagation in dispersive media. We recall herdng scaling:
some important aspects of the notion of group velocity fol-
lowing Ref.[2]. AN<L<L, 2

In the framework of Eqs(1), the group velocityﬁg rep-
resents the velocity along a ray trajectory on which thewherex, L, and. are the characteristic values of the wave-

change of the wave vectéiris governed by the second equa- 1€N9th, the wave packet width, and the spatial scale of the
tion in Eqs.(1). This property of being the velocity of propa- problem, res_p_ectlvely. The me_qualltl(ﬁ constitute the well
gation of wave number perturbations constitutes one role of"oWn conditions of applicability for GQ3]. _

the group velocity. The other one consists in that the wave | N€ concept of group velocity is usually used with refer-

amplitude perturbations also propagate with the group velocNce 0 transparent media, i.e., in the case when both the
ity. In particular, if the initial wave packet is localized in [reduency and wave vector connected by a dispersion relfa-
tion are real quantitiesAn investigation of the group veloc-

space a[oundo, and its specEraI amplitude is substantial ity in an absorbing medium for the example of Gaussian
only for k close to some valug,, then the resulting wave \yaye packet propagation has been presented in [R&f.
f|e|d iS Concentrated around the ra.y trajeCtory determined byvhere the Corresponding references may alSO be fa)m
Egs.(1) with initial conditionsFo,IZo, the wave packet as the cording to GO, waves do not propagate in an area where the
whole moving with the corresponding group velocity. local dispersion relation gives an imaginary wave vector
component for a fixed value of frequency. In this case, Egs.
(1) describe the reflection of a wave from an evanescent
*Permanent address: IZMIRAN, Troitsk, Moscow Region, region. The basis for treating the wave frequency as being
142190, Russia. Electronic address: david@izmiran.rssi.ru fixed is that, in a stationary medium, the wave frequency
Electronic address: matsumot@kurasc.kyoto-u.ac.jp does not change. This argument is certainly valid if, from the

where the wave vectdt plays the role of particle momen-

1063-651X/2002/6@})/04661211)/$20.00 66 046612-1 ©2002 The American Physical Society



D. R. SHKLYAR AND H. MATSUMOTO PHYSICAL REVIEW E66, 046612 (2002

very beginning, we look for a monochromatic and, thus, sta- °
tionary solution to a problem. However, it is necessary to
bear in mind that any initial problem is not stationd8j,
and the physical requirements under which such a problerr ¢
with localized initial conditions is near monochromatic are
not trivial.

It is generally admitted that the description of electromag- :
netic field in the evanescent region in a way similar to that
used for transparent region is problematic; in particular, the °|
concept of signal velocity in opaque region is still under _, .
discussion6,7]. Clearly, for a description of the field behav-
ior in the evanescent region, it is necessary to use wave ™[
equations rather than the equations of GO. However, while |
using the wave equations, the basic characteristics of the
field beyond a density barrier were obtained for a monochro- -¢f ]
matic and, thus, stationary problem. Obviously, such a con-

_10 L L L L L L L

sideration does not contain the dynamics of the process, asiii® =* =%+ -2 0 2 4 6 & 1

sk

a stationary problem, the dynamics are missing. Similar situ- FIG. 1. Complexp plane.

ation, as has been pointed out in Ré&f, is in the problem of

guantum tupneling: fixed energy tunneling described by sta- af(x,t)
tionary Schrdinger equation is well understood, while there () =F(X,)]i=g, @(X)= ' ,
are still open questions in nonstationary problem. L PR

The present work is devoted to investigation of the field
dynamics in the evanescent region, in particular, to determinand applying Laplace transformation over time to £3).we
ing the velocityv at which a field perturbation penetrates obtain
beyond the density barrier. We show that a physically mean-
ingful definition of this quantity, which at the same time 8’F(X,p) 5 5 B
constitutes a means of measuring it, leads to finite values of 7_[%(’(” PEIF(X,p)=—p¢(x)—@(x). (4)
v Which are always less than the speed of light. We should
note a closely related, both from physical and mathematic
points of view, problem of particle tunneling time in quan-
tum mechanicg¢see comprehensive discussions of the prob
lem in Refs.[9-11] and references therginAlthough the
problem of quantum tunneling is out of the scope of the
present work, some comments and comparisons related to 2
our results are given where appropriate.

aI|-|ere F(x,p) is Laplace transform over time of the field
f(x,t) determined in the usual wafe.g., Ref.[12]). Note
that the quantity in square brackets in E4) is equal, re-
spectively, to

®)

Il. MODEL AND BASIC EQUATIONS

id di ional initial blem f We now defineq and x as single-valued functions of the
We consider a one-dimensional initial problem for trans'complex variablep,

verse electromagnetic waves in a plasma with a density jump
at thex=0 plane. In dimensionless variables in which the _ _ 7
- . =\1+p? =Jol +
speed of light and the plasma frequencyxatO are unity, A=v1+p%  w=vol ' ©
this problem is described by the following equation for any

component of the electromagnetic field: whereq and « are the values of the square root with a posi-

tive real part. Obviously, the functiompandx determined in
this way are analytical functions @fin the right-half plane,
PE(x,t)  PPF(x,t) 5 i.e., at Rep)>0. However, if we introduce two branch cuts
PR + () f(x,t)=0, (3 from —ic up to —i and fromi up toi» (see Fig. 1, then,
given w2 >1, the functions determined above will be ana-
Iytical functions of p in any area of the complex plane

where which does not contain the branch cuts. On different banks
of the cuts, the imaginary parts of the functiogsand «
1, x<0 differ by signs, while their real parts are positive in the whole
wi(X)=1 , domain of analyticity. We also specify the asymptotic prop-
P oy, x>0, erties of the functions) and « at |p|— <,
and it is assumed tha#2 >1. Introducing initial values of . p, Rep)>0 @
the field f(x,t) and its derivative over time according to d -p, Rgp)<O0.
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At the same time, on the part of imaginary agisonnecting whereq and« are the analytical functions gfdetermined in

the branch cuts, the functiolgsand x are positive real quan- Eqgs. (6). We assume that, at—0, x<0, the field f(x,t)

tities. constitutes a wave packet composed of waves in which the
Having determined the functiorggand «, let us turn to  frequency and wave vector are connected by the dispersion

fundamental set of the homogeneous equatibnThis set, relation relevant for the propagation regian<(0),

which represents two linearly independent solutions of the

homogeneous equation continuous at the peaiat0, to-

“ Lo dk
—0)= kx—iw(k)t —_
gether with their first derivatives overcan be chosen in the f(x,t=0) J’iw'ﬁl(k)el e

form
+ * o~ Kk ikx+iw(k)t% 13
eqx' X<0 70017[,2( )e 2’ ( )
Hi(x)=4§ k+ K—
T e e 0, where
oo 0 ®) (k)= 1+ KZsgrk). (14)
Ho(x)=9 k—q k+q The first integral in Eq(13) represents a wave packet propa-
?e"“r 2 ¢ *, x>0. gating in positive direction of the axis while the second
integral corresponds to waves propagating in the negative
The corresponding Wronskian is equal to direction of thex axis. As we assume that the wave packet is
initially localized in the regiork<0, the particular form of
W=H,(X)H,(x)—H1(X)Ha(x)= —2q, (9)  the function,(k) should not influence the field in the

=0 region of present interest. Therefore, we can write
where the prime means derivative with respeck.t&Know-

ing the fundamental set of homogeneous equation it is pos- w( )
sible to write the solution of the inhomogeneous equatin ¢2(k) ‘pl(k) (15
according to a general formula. The solution, finite at both
X— —o andx— +o, can be written as Then,
o L odk
X")r(x ~
F(x,p)= HZ(X)J l(—())dx’ l//(X)Ef(X,t)|t=o=J w(k)e'kxz,
X/ — oo
(16)
af(x,t)
+Ha(x )f 2( )( L Hyx )— p)=—p—| =
t=0
© Hy(x")r(x") Thus, with the assumptiorid3) and(15), the second term in
X f_ Tx’)dx,' (100 the square brackets in E(L.2) vanishes. Let us designate by

W (p) the integral corresponding to the first term in ELR),

wherer (x) is the right hand side of Ed4), 0 ,
= [ e uixdx, a7
r(x)=—py(x)—e(x), o

where q=q(p) is the function defined above, so th#t
=W¥[q(p)] is a composite function gb. Integral(17) is an
analytical function ofg for all Re(q)>0. Since in the whole
complexp plane outside the branch cuts the quandgtig an
analytical function ofp, and has Re&() >0, in the same area

W is determined in Eq9), and all quantities, H;, H,, and
W depend on the parameterof the Laplace transformation.
The fieldf (x,t) is expressed throudgh(x,p) with the help of
the inverse Laplace transformatioe.g., Ref[12]),

1 (otie of p plane the function¥(p) appears to be an analytical
f(x,t)==— F(x,p)ePldp (o>0). (1)  function ofp. In terms of the notation introduced, the expres-
21 ) —ice sion for the field which follows from Eqg11) and(12) can

. ) . be rewritten in the form
Let us now simplify the solutior{10) for x>0. Using the

corresponding expressions fa,(x), H,(x), r(x), and 1 (oti=pe **
W(x), and assuming that the initial perturbation is localized f(x,t)= f
in the regionx<0, we get

P W(p)eP'dp. (18

o—iw K+q
We should notice that the quantitk{q) is not equal to

dx', (12 Zero a_nywhere on the cpm_plex plapewhich is easily veri-
fied with the help of definitiong6).

P(x")+

e(x")
p

pe—K)( 0 ,
Foop =t [ e
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lll. FIELD PENETRATION INTO AN EVANESCENT t<X—Xo=X+]|Xo|, (25)
REGION IN THE CASE OF A QUASI-GAUSSIAN INITIAL
WAVE PACKET the integrand decreases exponentialljt—o and Ref)

>0. Thus the contour of integration can be closed in the
right-half plane. Since the Laplace transform is an analytical
Let the field att=0 be expressed as function ofp in the right-half plane, the total integral is iden-
B N Ko tically equal to zero. The quantity+ | x| represents the dis-
PO)=T(Xt=0)=A(X—Xp) €5, (19 tance from the packet leading edgetat0 to the pointx in
the evanescent region. Singgandx are arbitrary(provided
thatxo<0 andx>0), and in dimensionless units the speed
of light is equal to unity, the result above shows that, either
in the transparent or in the evanescent region, the signal does
27 /kg<L <Xy (20) not propagate with a vglocity_ exceeding thg speed of I_ight.
This general result, which arises naturally in our consider-
We will assume that, in the region whebéx—x,,) is essen- ation, is the direct consequence of asymptotic relatiohs

A. Expression for the field

whereA(x—Xp,) is a slowly varying amplitude localized in
the regionx<<0 aroundx,, and having a characteristic scale
L obeying the requirements

“a”y distinct from zero, it has the form connected with Eq(3) We would not find this effect |f,
instead of using Lorentz-invariant equatid8), we used
A(X—X) =€~ K xmL?, (21  Schralinger equation, which, in a sense, is an expansion of

Eq. (3) valid only for small k—ky)2. Thus, the result above
We cannot, however, consider this presentation to be valiés a relativistic effect. We should mention that superluminal
for all x. This would lead to incorrect properties of the func- or infinite velocities could be “found” in many cases other
tion W(p) (17) at |p|—= because the expressig@l), al-  than Schrdinger equation, when nonrelativistic relations are
though exponentially small, is not zero at-0. Neverthe- used out of the frame of their validity. For example, New-
less, for the sake of shortness, we will omit the prefixton's law leads to unlimited increase of a charged particle
“quasi” later on. velocity in a constant electric field; less trivial example is
According to the problem under discussion, we will as-that according to classical thermal conductivity equation, a
sume that the wave frequenay, corresponding to the wave temperature perturbation propagates with infinite velocity,
vector kg in the regionx<0 is lower than the plasma fre- €tc.

quency atx>0, i.e., Let us now turn to the general case 0, whent is not
restricted by inequality25). As the integration in Eq.23) is
wo=V1+ki<w, . (220  performed only over the regior<<O, the quantityW(p)

drops exponentially dip|— and Rep) <0, since the cor-
The functionW(p) (17), which defines the field ax>0 responding values off obey the requirements)|—« and

according to the formulél8), is thus equal to Re(q) >0 [see Eq.(7)]. Thus, att>0, the integrand in Eq.
(18) tends to zero exponentially &p|—~ and Rep)<O0.
0 " ikex! Nevertheless, we cannot close the contour of integration in
— gx’ +ikgx r_ ’ )
¥ (p) j,xe A = Xm) A 23 the left-half plane due to the presence of branch ¢sée

Fig. 1. It is possible, however, to deform the contour of
Proceeding to the analysis of the field in the evanescent r@ntegration so that it does not intersect the branch cuts any-
gion determined by Eqg18) and (23) let us assume that where and to perform the integration over the cont8yr
A(X' —Xxy) =0 for x>X,, i.e.,xg<0 is the coordinate of the +S;+S, shown in Fig. 1. As we have seen above, the inte-
leading edge of initial wave packet. Then, the quani#$)  gral over the contou; tends to zero, so the evaluation is

permits the following estimation: reduced to integration over the conto@sandsS,, i.e., over
the banks of cuts. It is convenient to transfer from integration
0 . . . . .
Re@)xo B over p to integration over the variablg. In doing this, one
[W(p)|<e f_mlA(erXO Xm) [y should remember the following: the functiogsand « are

single-valued analytical functions qf outside the branch
<MeRe@*o M =consk o, (24) cuts. However, there is no one-to-one relation between these
functions, as the valugs and —p correspond to the same
where we have assumed that the amplitude of the initialalues ofg and k. One should bear this in mind when ex-
wave packet is an absolutely integrable function. Using Eqpressing the functiong and « throughq in different parts of
(24) and relationg7), we find the asymptotic behavior of the the complex plane of the variabfe We will write the com-
integrand in Eq(18) at |p|—« and Rep)>0, i.e., in the plex quantitiesp, ¢, andx asp=p;+ip,, q=0q;+iq,,
right-half plane, = k1 t+ik,. Obviously, on the banks of cuts, the valuegef
andq,>0 are infinitesimal, i.e.p andq are close to purely

pe P! M Re(®) (t—x+xo) imaginary numbers. The quantikyalso has an infinitesimal
K+ ¥(p) <5e ' positive real part on the banks of cuts|pj|>w, , while at
1<|py|<w. itis close to real positive quantity. These prop-
We see that for erties, which follow from definitiong5),(6) allow us to ex-
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pressp and « as functions ofg on the contourss; andS,.

Thus, for the quantityp we have o (k—ko)?L?/4

f(x,t)=

ffw k[kw(k)]

—i\/1+q§ for Im(p)<O (contour S,), % @~ K(Kx—i(k—ko)xm—iw(k)t

ivyi+gs  for Im(p)>0 (contourS,).

As for the quantityx, according to Eqs(5) and (6), «
= \/(w2+— 1)+0°. Here, however, we cannot takg=0 on
the contours of integration, since the requirementd3e(0
does not permit us to determine the branch of the square root
corresponding to thosg values for which the quantity is
purely imaginary. Therefore, for an exact definition of thewhich determines the poirkg as the function ot and the
square root, we should take into account that the quaqtity parametersk,, L, and x,,. The wave group velocity,
has, though infinitesimal, positive real part. This leads to avhich enters Eq(30) is equal to

29
oe (29
The integral in Eq.(29) can be evaluated with the help of
saddle-point technique using the fact thgkp,, kov4t, and

koL are large parameters. The saddle point is specified by the
equation

(Ks— ko) L2+ 2i[ Xm+v4(ks)t]=0, (30)

definition of x valid on both contours of integration

k=\(0? —1)—d3+issgrd,), Rex)>0. (26
Small additivei esgn(q,) does not play a role foq2<(w+
—1) whenk is a positive quantity but allows us to correctly
determine the sign of the imaginary part eoffor q2>(wJr
—-1).

As we have seen, the integration in E48) can be re-
duced to integrals over the banks of cuts on the plaff€g.
1), where the quantity is purely imaginaryg=iq,. When
evaluating the quantity (p) (23) for imaginary values ofj,
we can already extend the integration to the whoéeis and
use the expressio(21) everywhere, since under conditions
(20) the regionx>0 brings an exponentially small contribu-
tion to the integral. We then get

W (p)=JmLe 2tk L24+i(dz+ko)xm, 27)

Using the expressiof27) and transfering to new variable of
integrationk= —q, we obtain from Eq(18),

f(x,t)= e—(k—ko)2L2/4

L J’w ok k
PN B TN

xXe~ k(K)x—i(k—kg)Xm— |w(k)t+ k[
C k+IK(k)]

% e—(k—k0)2L2/4e— K(k)x—i(k—ko)xm+iw(k)t,

(28)

o k
TSN el

The integral (29) contains the fast oscillating factor and,
thus, is exponentially small unlesx,,+ ug(k)t|<L/\/—
<|Xm|. (We remind the reader that,<0.) The analysis of
Eqg. (30) shows that the position of the saddle point on the
complexk plane is controlled by the parameter that we de-
note by « and which is of fundamental importance in our
problem,

| Xml
=—. 31

koL? (31
The physical meaning of the parametercan be understood
from the well known GO equation for the complex wave
amplitudeA including dispersive termgsee, for example,
Ref.[13]),

L avg A

[ oA A
2 (?k (7)( !

i| =+
gt Vagx) T

which shows that the dispersive spreading of the wave
packet becomes important fog~ kOLZ/vg, while the time

of wave packet propagation up to the density jumptjs
~|Xml/vg. We thus see that the parametercontrols the
dispersive spread of the wave packet before it reaches the
pointx=0. In the following, we will assume that

a<l, (32

where the first and second integrals correspond, respectively,

to integration over the contou&; ,S,; w(k) is given by Eq.
(14), and (k)= k(—q5), wherek(q,) is determined in Eq.
(26).

Proceeding to the analysis of the fi¢RB), we notice that
the characteristic scale of variation of the factor [expk
—ko)?L?/4] is of the order of#/L, while the fast varying
exponent exp—i(k—Kkg)Xy,] oscillates with a much smaller
period 2/|x,| [see Eq.(20)]. As the variation of the total
phase in the second integral in Eg8) for k~k, is fast for
all t>0, its contribution to the field is exponentially small,
so that the field ak>0 is approximately determined by

i.e., the dispersive spread is not important. In this case one
gets from Eq.(30),

i Xm+vgot
kKs—ko)=—2i ————, (33
(e L2+ 2iv got
where
’ &UQ
vgo=vg(k0), UQOZW .
k=kg
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We see that the saddle point is close to the real axis, the
deviation of the real part dfg from k, being of the second

order in parametett. The expansion of the fast varying part S
of the phase in Eq29) aroundkg has the form P R

k—Kg)2L2 : \
——( 40) —i(k—kg)Xm—iw(k)t g”’ | \
2 2 i %’2'5
Xm~+ U got) L? vt A %% N
:_i“""—%_(7+ k- @8 f |
IUgO 35 » \\\\\ :
wherewy= w(Kkg). Substitutingk=Kg into all slowly varying ' -§=\\\§'§\§ \\\\\\:\

-

guantities in Eq(29) and performing the integration we ob-
tain in a straightforward way

Dimensionless time, t

Dimensionless coordinate, X
Ks
f(x,t)= - FIG. 2. Surface of the field amplitude above thet] plane f
, Y K+ir(K . 2. plitude above I plane for
VL +2ivgot [kstintks)] the Gaussian initial wave packet.
X+ U got )2
XeX[{ _ ( m g0 )

L2+ 2iv got

e «kdx—iwot (35 portant to note that the value efcannot be chosen arbitrary
small. Indeed, according to Eq4.9) and(21) the field atx
=0, t=0 is equal to

where the square root of the complex quantity has a positive

real part. As follows from Eq(35), the field is essentially f(x=0, tzO)zexp(—leLz). (39)

distinct from zero only fort~—xy,/vgo Whenks=k, [see "

Eqg. (33)]. In the lowest order in parameter, the expression

for the field amplitude takes the form

As we assume that &t 0 the field is localized in the region
x<0, the minimum level of measurable signal should be
much larger than the valu@9), i.e.,

|f(xit)|: Ko e K(kO)X_(Xm+UgOt)2/L2. (36)
w2—-1 e>exp —x2/L?),
B. Signal velocity in the evanescent region so that
Expression(36) permits us to determine the velocity of 20 5fx| 2000k
signal penetration beyond the barrier. We define the time of V< Ygol?ml Vg0 o
signal arrival at a poink as the time when the signal ampli- Kol 2 Ko

tude reaches a certain measurable levgl,. When it hap-
pens, the corresponding value of the exponent in (B6),  where the relation$31) and (32) have been taken into ac-
which we denote by, is equal to count. Thus, the velocity of signal is always less than the
speed of light.
o (ko)X (Xt 0go) L2 — AminVos —1 37 Recently, there has been a considerable discussion of the
Ko : signals related to the evanescent mddee Ref.[14] and
other papers from Ref11]). The central point in this discus-
We should mention that, by definitios;<1. Equation(37)  sion is whether or not those signals can travel with the ve-
determines the signal arrival time at the pointvhile the  locity exceeding the speed of light. The pap@d]| claims
derivative of the inverse function gives the velocity of the such a possibility, which has supposedly been demonstrated.

signal in the regiox>0, At the same time, we have shown that the signal velocity
introduced above is always less that the speed of light. To

dx 2v40 1 clear up this point, let us consider the dynamics of the field
at VST el V In(;) — KoX. (38)  penetration into the evanescent region in more detail. Figures

2—4 show the surface of the field amplitude in the evanes-

We see that the signal velocity beyond the density barrier SNt région, as well as the cross sections of this surface rep-

essentially different from that in the transparent region. First/€S€nting the field amplitude as the function of time for vari-

it decreases with up to zero, in accordance with the fact ous coordinates, and the field amplitude as the function of
that, at largex, the field amplitude never reaches the choserFoor%'nater? f?rl\llarlpus mlomentfs of time. Flg.ures 2—4 corre-
level. Second, the signal velocity depends, although Iogarith§'pon to the following values of parameters:

mically, on the chosen leved,,,, so that lower values of )

signal amplitude propagate with higher velocities. It is im- Xm=—50, L=15, ko=1, 0} =3.
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° means implies that the signal reaches all spatial points in the
evanescent region at the same time. This becomes clearer if
we consider Fig. 4: looking, for example, at the boldface line
corresponding to dimensionless tirtee 70, it is impossible

- to say at which point the signal is at this moment, as the

8 s signal is spread over the whole evanescent region. The in-

g stantaneous traverse of the evanescent region, and the corre-
3 sponding infinite velocity pointed out in Refl14], would

é’ require the absence of the field in the evanescent region at
g-28 the preceding moment, which, of course, is not the case.

Moreover, if one defines the signal position at some moment
t as the point corresponding to the maximum spatial ampli-
tude, then the signal would always be at the paint0 and
thus not propagating at all.

11;0 1éo 140 1§o IV. PECULIARITIES OF THE FIELD DYNAMICS

4
60 80
Dimensioniess ime. t IN THE MODEL OF A STEP-LIKE INITIAL
FIG. 3. Field amplitude as the function of time for various co- WAVE PACKET
ordinatesx=1,2, ... ,9, for the @ussian initial wave packet.

As the question about signal velocity in the evanescent
region is of fundamental importance, to get more insight into
nt[his problem we will consider another model of the initial
wave packet, namely,

We see that the field dynami¢ehich, of course, exists in
nonstationary problem, as the field amplitude at each poi
depends on timehas nothing to do with propagation. We
suspect that the conclusion about the instantaneous traverse f(X,t=0)=(x) = R(x)ekoX, (40)
of the evanescent region by the signal is connected with a

misinterpretation of some plot similar to that shown in Fig. where the functiorR(x) is equal to

3, and with the extension of an intuitive concept of the me-

chanical velocity to nonlocal process. In general, to deter- R0 = 1 for (Xm=1)<X<(Xm*1),
mine a velocity, we need to know two spatial positions of the 0 for x<(Xpm—)|x>(Xpm+1).
object at two moments of time. A mass point represents the

simplest example which casts no doubt about the mass poifitunction R(x) (41), which determines the initial wave
position at each moment of time. A wave packet with a charpacket envelope, represents a step of a finite width inxthe
acteristic width less than the distance between two spatig@ipace. As in the case of Gaussian wave packet, the quantity
points can be treated in a similar way. But in the case ok,<0 is equal to the coordinate of the wave packet center,
evanescent region, we deal with the opposite situation. Here>0 is its half-width, the coordinate of the packet front
the characteristic spatial scale is less than the wave packétn,+1) lies in the regiorx<<0, and the relatiori22) is also
width because the wave vanishes on the length of the ord@ssumed. The expressi¢h8) for a field in the evanescent

of several wavelengths, while the initial wave packet widthregion remains valid, while the functiolt(p) now takes the

is much larger than thdisee Eq.(20)]. Thus, Fig. 3 by no form

(42)

N
\Il(p): (q+|k0)o ] e(Q‘FIkO)Xm, (42)

where sinh stands for hyperbolic sine.
The field determined by Eq$42) and(18) is equal to

e‘koxmfﬁimsinr[(qﬂko)l]

fO=" ) (aro(atik)

o : : : : : : S'”"[(Q""k

itude
L
o

O Xm— KX+ ptpd p.
(43)

Since the integrand in E¢43) is an analytical function op
in the right-half plane, and &p|— = is asymptotically equal
to e Xm*1=X)/n [see Eq(7)], we immediately find that at
t<x+|x,+!| the integral is equal to zero. Thus, in this
model we also meet with the fact that, in both the regions
~ : : x<0 andx>0, the signal moves with a velocity not larger
8 12 than the speed of light.

For t>X+|x,+1|, in evaluation of the field43) we may

FIG. 4. Field amplitude as the function &ffor various times  follow the same steps as in the case of Gaussian wave

t=10,2Q . . .,140, for the Gaussian initial wave packet. packet, thus arriving at

1 Of the field ampl
&

5

og.

6
Dimenslonless coordinate, x
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_1( sin (k—ko)l] —i(k—ko)Xm— K (K)x—i V1+K2
f(x’t)_gﬁw k—kokrink]S T kdk (44)

where «(k)= (w5 —1)—k?’—iesgnk), Rdx(k)]>0. =xy,1t1<0. However, if we define the signal velocity in the
Due to Eq.(22), « is a real positive quantity fok=ko, evanescent region in the same way as for Gaussian wave
which is a manifestation of the fact that the regior0 is  packet, i.e., according to the time of finite signal amplitude
opague for the frequenay,= 1+ k2 k2. arrival at some point, we will find that, in both the transpar-
The field f(x,t) at x>0 is equal to zero not only for ~ €Nt apd evanescent regions, the signal propagates yvith the
<x+|x,+1|, as we have seen above, but also feso, velocity of Ilghf[ (see Fig. % Just the fact that t_he _S|gnal
since the integrand in Eq44) is smooth and finite on the eaches the point=0 att=|xy+1], thus propagating in the
whole k axis, tends to zero fok|—o, and contains an os- transparent region with the speed of light rather than with a
cillating factor whose period tends to zerotat=. The fact ~970up Velocityvgo<1, gives the key to understanding this
that the field in the evanescent region vanishes-atc is ~ '€Sult. The point is that the packét0),(41) contains high
connected with that we consider the density barrier which i1armonics withk>k, with significant amplitudes for which
semi-infinite in space, i.e., that extends in the whole regior{n€ density jump at the point=0 does not represent a “po-
x>0. This excludes an asymptotic wave tunneling, so thd€ntial barrier” and which propagate at aliwith a velocity
process that we study is purely transient. Apart from dealing!0Se to the speed of light. _
with a type of telegraph equation rather than with Sehro AS we see from Fig. 5, the field amplitudeat x>0 has

dinger equation, this is another point that differs our study? duité complicated structure. Figure 6 shows the amplitude
from investigations of quantum tunneling through a finite A @s the function of time for several coordinates in the eva-

width potential barrief8,15]. nescent region. Not surprisingly, fge=0 the plot is .cer_1t.ered
Obviously, the intermediate values of time, i.¢=x  ONt=|Xm|/vgo. However, even ax=0 there is a significant

+|xn+1| are of the main interest for investigating the tran- SPréad of the wave packet as compared to the initial shape.

sient process of field penetration beyond the density barrieflthough a characteristic width of the platt~2I/vy is

For the time interval which includes the above mentionedVell explained by propagation features in the region0,

values, the integral4) has been calculated numerically. The the essential influence of ttke~ ko harmonics is clearly seen.

surface of the field amplitud&(x,t) =|f(x,t)| is shown in An important feature of the field dynamics in the region

Fig. 5 for the following values of the model parameters: >0 in the case of a steplike initial wave packet is that it
evidently shows signs of propagation. This is related to the
Xm=—20, 1=15 ko=1, o2=3. fact that the integral in Eq44) is slowly converging, which
At first glance the “rectangular” wave packet modéb) is a mthematlca_lI manifestation of th_e influence of the high
: harmonics mentioned above. The influence and eventual

(41) seems quite suitable for defining the velocity of field ominance of high harmonics in the framework of Sehro
penetration beyond a density barrier. Really, the spectrum oginger equation r?as been pointed out by Hart (see
the initial perturbation has a pronounced maximumkat also Refs[15.17)). Thus, the field ak>0 is deteI[r&mﬁiﬂned by

=Kkg, which corresponds te@g<w, in the regionx<0; the i - . . .
field is initially localized and has a sharp leading edge at a competition betweek=ko harmonics which dominate the

Field amplitude
© o o

Dimensionless time, t

Dimensionless coordinate, X

FIG. 5. Surface of the field amplitude above thet] plane for FIG. 6. Field amplitude as the function of time for various co-
the steplike initial wave packet. ordinatesx=0,3, . . .,18, for the steplike initial wave packet.
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initial field but attenuate heavily in the evanescent regionto say that some sign#br informatior) associated with the
and |k—ko|>1/ harmonics whose amplitudes are smalleramplitude maximum comes first to the poiw 0 and then
but which suffer less or no attenuation in the region0. in no time reaches the whole evanescent region. Since these
This makes the problem extremely sensitive to the spectrurmaxima decrease exponentially with the distance, they can-
of initial perturbation, especially to the way how it drops at not be considered as the same sigfitlhe observed reshap-
k— oo, which has been pointed out in RE€L8]. At x=0, the ing of a wave packet, or deformation of a pulse should not be
field is mainly determined by th&=k, harmonics which mixed with propagatiorf15].) Thus, we can only say that
undergo no attenuation in the<0 region. However, fox  some information sent from an extended source by means of
>0, the bulk of high harmonics, some of which can propa-a finite (or even infinitg¢ band width wave packet reached the
gate in the regiorx>0, play the dominant part, causing the whole evanescent region simultaneously. Under the condi-
propagation features to appear. We should underline that, itions that(1) the time at which the signal reaches any point is
the context of field penetration into the evanescent regionarger than the distance from the wave packet leading edge at
the term “attenuation” used above describes the field behavt=0 divided by the speed of light, ar{@) the spatial dimen-
ior which is not related to a true absorption of energy. sion of the evanescent region is smaller than that of the
Main features of the time dependence of the local fieldsource, both of which are met, the simultaneous appearance
amplitude in the evanescent region shown in Fig. 6, namelyf local field amplitude maxima at all points in the evanes-
the presence of two maxima, oscillations after the secongent region does not contradict either relativity or causality
maximum, and final vanishing at large time are quite similarprinciples. This conclusion is based on the detailed analysis
to those found in Ref.8] for the case of finite width poten- of particular physical model. Strong arguments against the
tial barrier in the context of Schdinger equatiorfsee Fig. 7  interpretation of experimental or theoretical results that as-
from Ref.[8]). It is not surprising, of course, since the fea- sumes violation of Einstein causality have been given in Ref.
tures of the field dynamics which are not determined by higH 6] based on most general physical principles.
harmonics should be alike for Schlinger and telegraph

equations.
VI. CONCLUDING REMARKS AND SUMMARY

OF RESULTS

V. SIGNAL VELOCITY FOR AN EXTENDED, FINITE

BANDWIDTH SOURCE VERSUS SUPERLUMINAL
PROPAGATION

Some of the recent works that investigate field evolution
in an evanescent medium consider boundary problem for a
point source within this mediurfiz,17]. Application of an

As we have seen above, in the case of a Gaussian initigffective filter to the source or receiver considered in Refs.
wave packet, the local amplitude maxima over time ard7,17] gives an important insight into the field nature in the
reached at all points in the evanescent region simultaneouslgvanescent medium. In particular, it permits to reduce the
In the case of a steplike initial wave packet, the amplitudemagnitude of forerunner as compared to monochromatic
maximum atx=0 is reached even later than at some pointsront, which helps detection of the lattésee the references
x>0. Phenomena of this type are sometimes referred to aabove for details Since in the present paper we study initial
“superluminal signal propagation14]. We proceed with a problem with an extended wave packet originally localized
general discussion of this issue pertaining to both Gaussiain transparent region, direct comparison of our results with
and steplike initial wave packets, in the framework of clas-those obtained in the above cited papers is hardly possible. In
sical electrodynamics, to which the contents of the presergeneral, we believe that initial problem that we consider is
paper are related. First of all, we notice that no signal reachesore suitable and clear for correct definition of signal veloc-
any point in either transparent or evanescent region fastety in the evanescent region.
than the light would reach this point from the leading edge of Inasmuch as in this study we are mainly interested in
the wave packet. Also, any given value of the field amplitudedetermining the velocity of the signal as the whole, and in
propagates in a “proper” way, namely, it first reaches thefinding conditions under which it is possible, we always deal
points that are closer to the wave packet front. Howeverwith the total spectrum of the signal. Not surprisingly, the
there is a tendency to consider the arrival of the amplitudevelocity found[see expressiof88)] is not universal, but de-
maximum as the arrival of some information. But even this,pends on specific initial conditions. More precisely, the sig-
on closer examination, does not contradict causality or relanal velocity depends ongy, (or ko), which is the wave char-
tivity principles. One should only realize that, in the problemacteristic in transparent region, &g, which accounts for the
under discussion, we deal with an extended initial sourceffective potential height, and also anwhich characterizes
with a dimension exceeding that of the region where thenitial spectrum, or equivalently, initial shape of the wave
signal is registered. Another essential point, which is particupacket envelope.
larly important for a steplike initial wave packet, is that a It is well understood and seems to be generally accepted
localized field always contains high harmonics. Although wethat superluminal propagation of the frofr leading edge
consider an initial problem, we deal with the second ordef a signal in the framework of Schdinger equation is con-
equation over time, and the initial conditions also include thenected with the fact that this equation, in contrast to Max-
time derivative of the field. Thus, in fact, we have high well's equations, is not Lorentz invariafit5]. However, the
space/time harmonics in the initial signal. Furthermore, it isquestion of superluminal velocity of a signal as a whole is
completely wrong, for example, for a Gaussian wave packetstill under discussion, and so is the definition of this velocity.
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A number of suggestions have been listed in R&f. Obvi-  barrier widthd) to a potential barrier, and arrived at a nega-
ously, in the framework of Schdinger equation this ques- tive conclusion. They have also revealed essential and well
tion is meaningful only in the case when the field in themotivated physical parameters of the problem. We should
evanescent region is not dominated by high harmonics. Atormulate clearly our conclusions on this matter for the prob-
we have seen above, if the initial spectrum does not drop fasém studied in this paper. The first natural and common re-
enough, e.g., in the case of steplike initial conditions, thequirement is the initial wave packet localization in front of
signal velocity is difficult to determine in the context of tele- the barrier. For a steplike packet, this assumes that, in con-
graph equation though. sidered geometry, the packet leading edge is initially located
The idea of superluminal velocity arises from the associato the left of the barrier. For a Gaussian initial wave packet,
tion (in fact, unsubstantiatg¢cf the time at which a local the localization in front of the barrier implies inequalities
maximum of the field amplitude appears at some pgiitt  (20). Although we consider semi-infinite barried-G«), in-
the evanescent region with the time of signal arrival. Such arqualities (20) mean that, in a sense, the wave packet is
association typical of the wave propagation in transpareninitially located far from the density barriéas compared to
media assumes silently that the wave packet amplitude igs own widthL). For a steplike packet, which is only com-
transported in space. In the evanescent region, where thgimentary example in our study, we did not perform any
local amplitude maximum decreases exponentially in spac&omprehensive analysis of the field dependence on the model
this conception has no physical grounds. Indeed, the wavgarameters, and did not find a case when the field in the
packet position at a time(or the most probable position of evanescent region is not dominated by high harmonics. In
a particle might be connected with a spatial maximum of the the considered example of paramet@mse comments to Fig.
wave packet amplitudéor the wave function amplitudeat  5), the signal velocity in the evanescent region consistent
this time. However, it is wrong to associate the amplitudewith our definition is equal to the speed of light.
maximum over time observed at some point with the wave Considering Gaussian wave packet, we have established
packet(or particle position, as the wave packet amplitude condition (32) for parameterr (31) that, together with Egs.
may be largeror even much largerat some other point at (20), permits to introduce the velocity for the signal as the
the same time. Thus, signal velocity in the evanescent regiofwhole relevant to the evanescent region. In physical terms,
needs to be rigorously defined, as has been underlined hjiese conditions require that, on one hand, the wave packet
many authorge.g., Refs[6,7]). maximum is situated far enough from the density jump in
Towards this aim, and in order to investigate the dynamicsgrder for a signal to be initially localized in transparent re-
of electromagnetic field penetration into the evanescent region; but on the other hand, it is localized close enough to
gion beyond a density jump in a plasma, the initial wavethe density jump in order for dispersive spread before reach-
problem has been solved in a frame of telegraph equationng the barrier to be negligible. These two conditions are
with initial conditions in the form of a wave packet localized compatible provided thakL>1, i.e., the wavelength is
in front of the density barrier. Since the wave field in the much shorter than a characteristic wave packet width. When
evanescent region is initially absent, and since, during théhese conditions are met, the saddle pdigtwhich deter-
process of reflection from the density jump, the field partlymines the field dynamics in the evanescent region is close to
penetrates through, there should be a physically meaningfyhe central wave numbdy, of the initial wave packet. For
quantity which describes the velocity of penetration. To deGaussian wave packet, not only the signal velocity is less
fine a physical quantity means to determine the way how thishan the speed of light, but it also has quite a specific char-

quantity should be measurgt]. We suggest defining signal acter: it depends on the distance in the evanescent region, as
velocity as the speed at which some small but finite level ofyell as on minimum measurable signal amplitude.

the field amplitude appears in the evanescent region. This

definition permits the determination of the velocity of the
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